

Dr John Armstrong

Department of Mathematics

Faculty of Natural and Mathematical Sciences 2024.09.21

Dr John Armstrong

Department of Mathematics

Hamburg24

Hessian Manifolds

Hessian Manifolds

- ► Definition of a (locally) Hessian Manifold
- ▶ Motivation in information Geometry
- ▶ Basic Hessian geometry
- ► Determining if a manifold is Hessian
- ► Cartan-Kahler Theory
 - 2-dimensions
 - ► 4-dimensions
 - ► Pontrjagin forms in higher dimensions

Definition of a Hessian Manifold

Definition

A Hessian Manifold (M,g) is a Riemannian-manifold where we can find a coordinate chart $x:M\to\mathbb{R}^n$ such that, in these coordinates, the Riemannian metric g satisfies

$$g_{ij}=\partial_i\partial_j\phi$$

for some potential function ϕ .

Definition of a Hessian Manifold

Definition

A Hessian Manifold (M,g) is a Riemannian-manifold where we can find a coordinate chart $x:M\to\mathbb{R}^n$ such that, in these coordinates, the Riemannian metric g satisfies

$$g_{ij}=\partial_i\partial_j\phi$$

for some potential function ϕ .

 ϕ will automatically be a convex function.

Probability theory recap

Definition

Given a topological space X we generate the $Borel\ \sigma$ -algebra, $\sigma(X)$, of measurable sets using

- ► Open sets
- Complements
- ► Countable unions
- ► Countable intersections

Probability theory recap

Definition

Given a topological space X we generate the Borel σ -algebra, $\sigma(X)$, of measurable sets using

- Open sets
- Complements
- ► Countable unions
- ► Countable intersections

Definition

A probability measure is a map $\mathbb{P}:\sigma(X)\to [0,1]$ which is additive on countable disjoint unions and satisfies $\mathbb{P}(X)=1$

Geometry Example

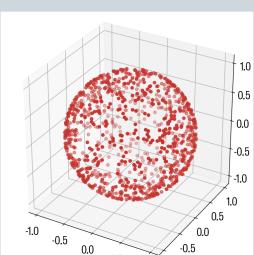
Example: If M is a smooth manifold and ρ is a density on M we can define:

$$\mathbb{P}_{
ho}(A) =: \int \mathbf{1}_{A} d\mathbb{P} = \int_{A}
ho$$

Geometry Example

Example: If M is a smooth manifold and ρ is a density on M we can define:

$$\mathbb{P}_{
ho}(A) =: \int \mathbf{1}_{A} d\mathbb{P} = \int_{A}
ho$$



The Radon-Nikodym derivative

Definition

The Diract mass at $x \in X$

$$\delta_x(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

This represents the deterministic random variable which always takes the value x.

The Radon-Nikodym derivative

Definition

The Diract mass at $x \in X$

$$\delta_X(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

This represents the deterministic random variable which always takes the value x.

Definition

If \mathbb{P}_i is a countable set of measures and $\lambda_i \in [0,1]$ are constants with $\sum_i \lambda_i = 1$ then

$$\left(\sum_{i}\lambda_{i}\mathbb{P}_{i}\right)\left(A\right):=\sum_{i}\lambda_{i}\mathbb{P}_{i}(A):$$

The Radon-Nikodym derivative

Definition

The Diract mass at $x \in X$

$$\delta_X(A) = \begin{cases} 1 & x \in A \\ 0 & x \notin A \end{cases}$$

This represents the deterministic random variable which always takes the value x.

Definition

If \mathbb{P}_i is a countable set of measures and $\lambda_i \in [0,1]$ are constants with $\sum_i \lambda_i = 1$ then

$$\left(\sum_{i}\lambda_{i}\mathbb{P}_{i}\right)\left(A
ight):=\sum_{i}\lambda_{i}\mathbb{P}_{i}(A):$$

Definition

Let $\rho: X \to [0, \infty)$ satisfy

$$\int_{\mathbb{X}} \rho \, d\mathbb{P} =$$

The Hellinger Distance

Let us define a metric on the space of densities. Suppose $\mathbb P$ and $\mathbb Q$ are densities.

The Hellinger Distance

Let us define a metric on the space of densities. Suppose $\mathbb P$ and $\mathbb Q$ are densities.

Choose λ such that

$$\frac{d\mathbb{P}}{d\lambda}, \quad \frac{d\mathbb{Q}}{d\lambda}$$

both exist (e.g. $\frac{1}{2}(\mathbb{P} + \mathbb{Q})$),

Definition

The Hellinger distance is defined by

$$d_H^2(\mathbb{P},\mathbb{Q}) := \frac{1}{2} \int_X \left(\sqrt{\frac{d\mathbb{P}}{d\lambda}} - \sqrt{\frac{d\mathbb{Q}}{d\lambda}} \right)^2 d\lambda$$

Motivation, the square ensures positivity. The square root ensures independence on choice of λ

Statistical families

Definition

Assume our original topological space, X is a manifold. A *smooth statistical model*, M, is a smooth manifold in the space of densities on X.

Example: The family of normal-distributions on $\mathbb R$ is a two-parameter family indexed by $\mu \in \mathbb R$ and $\sigma \in (0,\infty)$ with density given by

$$\frac{1}{\sqrt{2\pi\sigma}}\exp\left(-\frac{1}{2\sigma^2}(X-\mu)^2\right)d\mathbb{R}.$$

Definition

The Fisher–Rao metric is (up to scale) the Riemannian metric induced by the Hellinger metric.

Example: The family of normal-distributions equipped with the Fisher-Rao metric is (up to a scale factor) isometric to 2-dimensional hyperbolic space.

Exponential families

Definition

Let $F: X \to \mathbb{R}^n$ be a smooth function, λ a reference measure. We say a smooth model M is an *exponential family* w.r.t. λ if it has a smooth chart $\theta: M \to \mathbb{R}^n$ with

$$m = \exp(\theta(m).F(x) - \psi(m)) \lambda$$

Note that $\psi(m)$ is just a multiplier that ensures the density integrates to 1.

Exponential families

Definition

Let $F: X \to \mathbb{R}^n$ be a smooth function, λ a reference measure. We say a smooth model M is an *exponential family* w.r.t. λ if it has a smooth chart $\theta: M \to \mathbb{R}^n$ with

$$m = \exp(\theta(m).F(x) - \psi(m)) \lambda$$

Note that $\psi(m)$ is just a multiplier that ensures the density integrates to 1.

Example: The family of normal-distributions forms an exponential family w.r.t. the Lebesgue measure

$$\theta = (-\frac{\mu}{\sigma^2}, \frac{\mu}{2\sigma})$$

$$T(x)=(x,x^2)$$

ensures that, for appropriately chosen $\psi: M \to \mathbb{R}$.

$$\frac{1}{\sqrt{2\pi\sigma}}\exp\left(-\frac{1}{2\sigma^2}(\mathbf{X}-\mu)^2\right) = \exp(\eta.\mathbf{T}(\mathbf{X})-\psi)$$

Other examples

- ► Bernoulli
- ► Binomial with fixed number of trials *n*
- ▶ Poisson
- Negative binomial with known number of failures r
- ► Pareto with known minimum value *x_m*
- ► Weibull with known shape *k*
- ► Laplace distribution with known mean μ
- ► Chi-squared distribution
- Normal distribution with known variance
- ► Continuous Bernoulli distribution
- Normal distribution
- ► Log-normal distribution
- ▶ inverse Gaussian
- ▶ Gamma distrbution
- ► Inverse gamma distribution
- ► Generalized inverse gamma distribution
- Scaled inverse chi-squared distribution
- ▶ Beta distribution variant 1
- ► Beta distribution variant 2
- Multivariate normal distribution
- ▶ ...

Dually flat manifolds

Theorem

If (M,g) is an exponential family and g is the Fisher-Rao metric then g is Hessian with potential function ψ with respect to the coordinate system θ , i.e.

$$g_{ij}=\partial_i\partial_j\psi$$

- ▶ Set $\eta(m) = E_m(F)$. Then η is a *sufficient statistic* for m.
- ▶ Define a function $p(m): X \to \mathbb{R}$ by

$$m = p(m)\lambda$$

▶ Define

$$\phi(m) = E_m(\log p)$$

Then g is also Hessian with potential function ϕ with resepect to the coordinate system η .

Definition

A Riemannian manifold (M,g) is dually flat if admits a flat, torsion free affine

Questions (Amari)

- ► Are all metrics g locally Hessian?
- ▶ If not, find a tensor which determines whether or not *g* is locally Hessian.

Example: Given a symmetric g, when can we locally find a function f and coordinates x such that

$$g_{ij} = (\partial_i f)(\partial_j f)$$

þ

Example: Given a symmetric g, when can we locally find a function f and coordinates x such that

$$g_{ij} = (\partial_i f)(\partial_j f)$$

þ

Only if g lies in the n dimensional subspace $\text{Im}\phi \subset S^2T$ where

$$\phi: T \to S^2 T$$
 by $\phi(x) = x \odot x$.

Sometimes we can't find a solution even at a point.

Example: Given a symmetric g, when can we locally find a function f and coordinates x such that

$$g_{ij} = (\partial_i f)(\partial_j f)$$

þ

Only if g lies in the n dimensional subspace $\text{Im}\phi \subset S^2T$ where

$$\phi: T \to S^2 T$$
 by $\phi(x) = x \odot x$.

Sometimes we can't find a solution even at a point.

Example: Given a one form η , when can we locally find a function f such that $df = \eta$.

Example: Given a symmetric g, when can we locally find a function f and coordinates x such that

$$g_{ij} = (\partial_i f)(\partial_j f)$$

þ

Only if g lies in the n dimensional subspace $\text{Im}\phi \subset S^2T$ where

$$\phi: T \to S^2 T$$
 by $\phi(x) = x \odot x$.

Sometimes we can't find a solution even at a point.

Example: Given a one form η , when can we locally find a function f such that $df = \eta$.

Since ddf = 0 we must have $d\eta = 0$ at x.

Sometimes we can find a solution at a point, but can't extend it even to first order around x.

- ▶ Let *E* and *F* be vector bundles and let $D : \Gamma(E) \to \Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.

- ▶ Let *E* and *F* be vector bundles and let $D : \Gamma(E) \to \Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- ▶ Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first *prolongation*. This is the operator which maps a section e to the one jet of $j_1(De)$.
- ▶ Define $D_i: J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

- ▶ Let *E* and *F* be vector bundles and let $D : \Gamma(E) \to \Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- ▶ Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first *prolongation*. This is the operator which maps a section e to the one jet of $j_1(De)$.
- ▶ Define $D_i: J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

We can only hope to solve the differential equation De=f if we can find an algebraic solution to every equation

$$D_ie = j_i(f)$$

at the point x.

Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

We have the exact sequence

$$0 \longrightarrow S^k T^* \otimes V \longrightarrow J_k(V) \longrightarrow J_{k-1}(V) \longrightarrow 0$$

- ► Let *E* and *F* be vector bundles and let *D* : $\Gamma(E)$ → $\Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- ▶ Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first *prolongation*. This is the operator which maps a section e to the one jet of $j_1(De)$.
- ▶ Define $D_i: J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

We can only hope to solve the differential equation De=f if we can find an algebraic solution to every equation

$$D_ie = j_i(f)$$

at the point x.

Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

We have the exact sequence

$$0 \longrightarrow S^k T^* \otimes V \longrightarrow J_k(V) \longrightarrow J_{k-1}(V) \longrightarrow 0$$

The highest order term of an operator defines a map

- ► Let *E* and *F* be vector bundles and let *D* : $\Gamma(E)$ → $\Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- ▶ Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first *prolongation*. This is the operator which maps a section e to the one jet of $j_1(De)$.
- ▶ Define $D_i: J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

We can only hope to solve the differential equation De=f if we can find an algebraic solution to every equation

$$D_ie = j_i(f)$$

at the point x.

Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

We have the exact sequence

$$0 \longrightarrow S^k T^* \otimes V \longrightarrow J_k(V) \longrightarrow J_{k-1}(V) \longrightarrow 0$$

The highest order term of an operator defines a map

- ► Let *E* and *F* be vector bundles and let *D* : $\Gamma(E)$ → $\Gamma(F)$ be a differential operator.
- ▶ $D: J_k(E) \to F$ where J_k is the bundle of k jets.
- ▶ Define $D_1: J_{k+1}(E) \to J_1(F)$ to be the first *prolongation*. This is the operator which maps a section e to the one jet of $j_1(De)$.
- ▶ Define $D_i: J_{k+i}(E) \to J_i(F)$ to be the *i*-th prolongation $e \to j_i(e)$

We can only hope to solve the differential equation De=f if we can find an algebraic solution to every equation

$$D_ie = j_i(f)$$

at the point x.

Applying the fact that derivatives commute may yield obstructions to the existence of solutions to a differential equation even locally.

We have the exact sequence

$$0 \longrightarrow S^k T^* \otimes V \longrightarrow J_k(V) \longrightarrow J_{k-1}(V) \longrightarrow 0$$

The highest order term of an operator defines a map

Cartan's Test

Given a basis $\{v_1, v_2, \dots v_n\}$ for T^*M , define the map:

$$\sigma_{i,m}: S^{k+i}\langle V_1, V_2, \dots V_m \rangle \otimes V_p \longrightarrow S^i T_p^* \otimes W_p$$

to be the restriction of σ_i .

Cartan's Test

Given a basis $\{v_1, v_2, \dots v_n\}$ for T^*M , define the map:

$$\sigma_{i,m}: S^{k+i}\langle V_1, V_2, \dots V_m \rangle \otimes V_p \longrightarrow S^i T_p^* \otimes W_p$$

to be the restriction of σ_i .

Define

$$g_{i,m} := \dim \ker \sigma_{i,m}.$$

Cartan's Test

Given a basis $\{v_1, v_2, \dots v_n\}$ for T^*M , define the map:

$$\sigma_{i,m}: S^{k+i}\langle v_1, v_2, \dots v_m \rangle \otimes V_p \longrightarrow S^i T_p^* \otimes W_p$$

to be the restriction of σ_i .

Define

$$g_{i,m} := \dim \ker \sigma_{i,m}$$
.

Definition

If one can find a basis $\{v_1,v_2,\ldots v_n\}$ and a number α such that σ_i is onto for all $i\leq \alpha$ and such that

$$g_{\alpha,n} = \sum_{\beta=0}^{\kappa} g_{\alpha-1\beta}$$

then the differential equation is said to be involutive.

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^k \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^k \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

We wish to solve

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = g_{ij}.$$

which is a second order equation for f and coords x. So input is n+1 functions of n variables.

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^k \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

We wish to solve

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = g_{ij}.$$

which is a second order equation for f and coords x. So input is n+1 functions of n variables.

Dimension of space of (k + 2) jets of f and x

$$d_k^1 = \dim J_{k+2}(x, f) = \sum_{i=0}^{k+2} (n+1) \binom{n+i-1}{i}.$$

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^k \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

We wish to solve

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = g_{ij}.$$

which is a second order equation for f and coords x. So input is n+1 functions of n variables.

Dimension of space of (k + 2) jets of f and x

$$a_k^1 = \dim J_{k+2}(x, f) = \sum_{i=0}^{k+2} (n+1) \binom{n+i-1}{i}.$$

Dimension of space of k jets of g:

$$d_k^2 = \dim J_k(g) = \sum_{i=0}^k \frac{n(n+1)}{2} \binom{n+i-1}{i}.$$

Dimension Counting

The dimension of the space of k-jets of 1 functions of n real variables is:

$$\dim J_k := \sum_{i=0}^k \dim(S^iT) = \sum_{i=0}^k \binom{n+i-1}{i}.$$

We wish to solve

$$\frac{\partial^2 f}{\partial x_i \partial x_i} = g_{ij}.$$

which is a second order equation for f and coords x. So input is n+1 functions of n variables.

Dimension of space of (k + 2) jets of f and x

$$d_k^1 = \dim J_{k+2}(x, f) = \sum_{i=0}^{k+2} (n+1) \binom{n+i-1}{i}.$$

Dimension of space of k jets of g:

$$d_k^2 = \dim J_k(g) = \sum_{i=0}^k \frac{n(n+1)}{2} \binom{n+i-1}{i}.$$

If n > 2, d_k^1 grows more slowly than d_k^2 . So most metrics are not Hessian metrics.

Lemma

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then * The tensor A_{ijk} lies in S^3T^* . We shall call it the $\{S^3$ -tensor $\}$ of $\overline{\nabla}$. * The S^3 -tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

Lemma

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then * The tensor A_{ijk} lies in S^3T^* . We shall call it the $\{S^3$ -tensor $\}$ of $\overline{\nabla}$. * The S^3 -tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

▶ $\overline{\nabla}$ is torsion free implies $A \in S^2T^* \otimes T$

Lemma

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then * The tensor A_{ijk} lies in S^3T^* . We shall call it the $\{S^3$ -tensor $\}$ of $\overline{\nabla}$. * The S^3 -tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

- ▶ $\overline{\nabla}$ is torsion free implies $A \in S^2T^* \otimes T$
- ▶ Using metric to identify T^* and T, both $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion free implies $A \in S^3T^*$

Lemma

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then * The tensor A_{ijk} lies in S^3T^* . We shall call it the $\{S^3$ -tensor $\}$ of $\overline{\nabla}$. * The S^3 -tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

- ▶ $\overline{\nabla}$ is torsion free implies $A \in S^2T^* \otimes T$
- ▶ Using metric to identify T^* and T, both $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion free implies $A \in S^3T^*$
- $ightharpoonup \overline{R} = 0$. But

$$\begin{split} \overline{R}_{XY}Z &= \overline{\nabla}_X \overline{\nabla}_Y Z - \overline{\nabla}_Y \overline{\nabla}_X - \overline{\nabla}_{[X,Y]} Z \\ &= R_{XY}Z + 2(\nabla_{[X}A)_{Y]}Z + 2A_{[X}A_{Y]}Z \end{split}$$

Lemma

Let (M,g) be a Riemannian manifold. Let ∇ denote the Levi–Civita connection and let $\overline{\nabla} = \nabla + A$ be a g-dually flat connection. Then * The tensor A_{ijk} lies in S^3T^* . We shall call it the $\{S^3$ -tensor $\}$ of $\overline{\nabla}$. * The S^3 -tensor determines the Riemann curvature tensor as follows:

$$R_{ijkl} = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}.$$

- ▶ $\overline{\nabla}$ is torsion free implies $A \in S^2T^* \otimes T$
- ▶ Using metric to identify T^* and T, both $\overline{\nabla}$ and $\overline{\nabla}^*$ are torsion free implies $A \in S^3T^*$
- $ightharpoonup \overline{R} = 0$. But

$$\begin{split} \overline{R}_{XY}Z &= \overline{\nabla}_X \overline{\nabla}_Y Z - \overline{\nabla}_Y \overline{\nabla}_X - \overline{\nabla}_{[X,Y]} Z \\ &= R_{XY}Z + 2(\nabla_{[X}A)_{Y]}Z + 2A_{[X}A_{Y]}Z \end{split}$$

▶ Projecting onto $\Lambda^2 \otimes \Lambda^2$ gives the result.

Curvature obstruction

Define a quadratic equivariant map ρ from $S^3T^* \to \Lambda^2T^* \otimes \Lambda^2T^*$ by:

$$\rho(A_{ijk}) = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}$$

If g is a Hessian metric R lies in image of ρ .

Curvature obstruction

Define a quadratic equivariant map ρ from $S^3T^* \to \Lambda^2T^* \otimes \Lambda^2T^*$ by:

$$\rho(A_{ijk}) = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}$$

If g is a Hessian metric R lies in image of ρ .

Corollary

In dimension \geq 5, ρ is not onto. Therefore the condition $R \in \text{Im } \rho$ is an obstruction to a metric being a Hessian metric.

Curvature obstruction

Define a quadratic equivariant map ρ from $S^3T^* \to \Lambda^2T^* \otimes \Lambda^2T^*$ by:

$$\rho(A_{ijk}) = -g^{ab}A_{ika}A_{jlb} + g^{ab}A_{ila}A_{jkb}$$

If g is a Hessian metric R lies in image of ρ .

Corollary

In dimension \geq 5, ρ is not onto. Therefore the condition $R \in \text{Im } \rho$ is an obstruction to a metric being a Hessian metric.

$$\dim \mathcal{R} = \dim(\operatorname{Space} \text{ of algebraic curvature tensors}) = \frac{1}{12}n^2(n^2 - 1)$$

$$\dim(S^3T) = \frac{1}{6}n(1+n)(2+n)$$

The former is strictly greater than the latter if $n \geq 5$

Lower dimensions

Theorem

In Dimension 3 ρ is onto, so there is no curvature obstruction.

Lower dimensions

Theorem

In Dimension 3 ρ is onto, so there is no curvature obstruction.

Theorem

 ρ is not onto in dimension 4 even though dim $\mathcal{R} = \dim(S^3T^*) = 20$.

Lower dimensions

Theorem

In Dimension 3 ρ is onto, so there is no curvature obstruction.

Theorem

 ρ is not onto in dimension 4 even though dim $\mathcal{R} = \dim(S^3T^*) = 20$.

Pick a random $A \in S^3T^*$ and compute rank of $(\rho*)_A$, the differential of ρ at A. It is 18 whereas the space of algebraic curvature tensors is 20 dimensional. (Proof with probability 1)

i## Finding conditions on the curvature

(Amari) What are the conditions on the curvature tensor for it to lie in the image of $\rho \mathfrak{P}$

▶ This is an *implicitization* question. Im ρ is given parametrically by the map ρ . We want implicit equations on the curvature tensor that define Im ρ .

i## Finding conditions on the curvature

(Amari) What are the conditions on the curvature tensor for it to lie in the image of $\rho \mathfrak{P}$

- ▶ This is an *implicitization* question. Im ρ is given parametrically by the map ρ . We want implicit equations on the curvature tensor that define Im ρ .
- This is a real algebraic geometry question and so a full answer will include inequalities.
- We can complexify the vector spaces, to get a complex algebraic geometry where the resulting implicit equations will be equalities. This is somewhat more feasible.

i## Finding conditions on the curvature

(Amari) What are the conditions on the curvature tensor for it to lie in the image of $\rho \mathfrak{P}$

- This is an *implicitization* question. Im ρ is given parametrically by the map ρ . We want implicit equations on the curvature tensor that define Im ρ .
- This is a real algebraic geometry question and so a full answer will include inequalities.
- We can complexify the vector spaces, to get a complex algebraic geometry where the resulting implicit equations will be equalities. This is somewhat more feasible.
- ► Grobner basis algorithms allow us to solve the latter problem in principle (for fixed *n*) but not in practice (doubly exponential time is common).
- Algorithms do exist for the real algebraic geometry problem too, but they're even less practical.

- ► The space of algebraic curvature tensors \mathcal{R} is associated to a representation of SO(n).
- ▶ Decompose \mathcal{R} into irreducible components under SO(n)

- ► The space of algebraic curvature tensors \mathcal{R} is associated to a representation of SO(n).
- ▶ Decompose \mathcal{R} into irreducible components under SO(n)
- \blacktriangleright Any invariant linear condition on ${\cal R}$ can be expressed as a linear combination of these irreducibles.
- ▶ Decompose $S^2\mathcal{R} \oplus \mathcal{R}$ into irreducibles. Any invariant quadratic condition on \mathcal{R} can be expressed as a linear combination of these irreducibles. etc.

- ► The space of algebraic curvature tensors \mathcal{R} is associated to a representation of SO(n).
- ▶ Decompose \mathcal{R} into irreducible components under SO(n)
- \blacktriangleright Any invariant linear condition on ${\cal R}$ can be expressed as a linear combination of these irreducibles.
- ▶ Decompose $S^2\mathcal{R} \oplus \mathcal{R}$ into irreducibles. Any invariant quadratic condition on \mathcal{R} can be expressed as a linear combination of these irreducibles. etc.
- ▶ If we have m irreducible components $\rho_1(R)$, $\rho_2(R)$, ..., $\rho_m(R)$. Choose m+1 random tensors A and solve the equation

$$\sum_{i}\alpha_{i}\rho_{i}(R)=0$$

for α_i to find all linear relations between the components.

 Once the linear relations are known, they can be verified by brute force computer algebra.

- ► The space of algebraic curvature tensors \mathcal{R} is associated to a representation of SO(n).
- ▶ Decompose \mathcal{R} into irreducible components under SO(n)
- \blacktriangleright Any invariant linear condition on ${\cal R}$ can be expressed as a linear combination of these irreducibles.
- ▶ Decompose $S^2\mathcal{R} \oplus \mathcal{R}$ into irreducibles. Any invariant quadratic condition on \mathcal{R} can be expressed as a linear combination of these irreducibles. etc.
- ▶ If we have m irreducible components $\rho_1(R)$, $\rho_2(R)$, ..., $\rho_m(R)$. Choose m+1 random tensors A and solve the equation

$$\sum_{i}\alpha_{i}\rho_{i}(R)=0$$

for α_i to find all linear relations between the components.

- Once the linear relations are known, they can be verified by brute force computer algebra.
- ▶ Representation theory of $SU(2) \times SU(2)$ is simple.