

Dr John Armstrong

Department of Mathematics

Faculty of Natural and Mathematical Sciences 2025.06.26

Dr John Armstrong

Department of Mathematics

Amamef25

Robustness of Gamma Hedging

Robustness of Gamma Hedging

Joint work with Purba Das (King's College London)

Building on work with Andrei Ionescu (King's College London)

Building on work with Claudio Bellani (Imperial); Damiano Brigo (Imperial); Tom Cass (Imperial)

- ► Gamma hedging European options elementary proofs
- ► Gamma hedging exotics

Mathematical finance without probability

- ► Föllmer Calcul d'Itô sans probabilites 1981
- ► Bick and Willinger *Dynamic spanning without probabilities* 1994
- ► Dupire. Functional Itô Calculus 2009
- Cont and co-authors e.g.
 - ► Riga 2015 analyses continuous time trading strategies
 - Ananova 2020 draws connections with rough path theory
- ► Perkowski and Prömel Vovhk measure and rough path theory 2016
- ► Allan, Liu, Prömel includes jumps 2021
- ▶ ..

Aim is to give a very simple proof of the effectiveness of the delta- and gamma-hedging strategies.

Remarks

Theorem

Let \hat{S}_t be a path of finite p-variation representing a stock price, for $t \in [0,T]$. Let σ_t be a path of finite q-variation with p < 3, q < 2 and $\frac{1}{p} + \frac{1}{q} > 1$. Suppose at each time in [0,T] one can purchase a European option with maturity T and convex, smooth, non-linear payoff function f^t whose implied volatility is σ_t . Using the delta-gamma-hedging strategy in the stock, a risk-free asset with return r and this option, one one can replicate any other European option with smooth payoff f^0 and maturity T for the Black-Scholes price: in the sense that the error in the discrete-time hedging strategy tends to 0 as the re-hedging interval tends to zero.

Remarks

Theorem

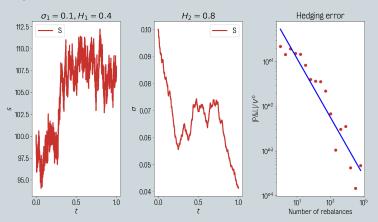
Let \hat{S}_t be a path of finite p-variation representing a stock price, for $t \in [0,T]$. Let σ_t be a path of finite q-variation with p < 3, q < 2 and $\frac{1}{p} + \frac{1}{q} > 1$. Suppose at each time in [0,T] one can purchase a European option with maturity T and convex, smooth, non-linear payoff function f^t whose implied volatility is σ_t . Using the delta-gamma-hedging strategy in the stock, a risk-free asset with return r and this option, one one can replicate any other European option with smooth payoff f^0 and maturity T for the Black-Scholes price: in the sense that the error in the discrete-time hedging strategy tends to 0 as the re-hedging interval tends to zero.

- ► This is a sure convergence result.
- ► There are no conditions other than regularity conditions on the trajectory \hat{S}_t or the path $\hat{\sigma}_t$
- ightharpoonup Using a change of numeraire we can assume WLOG that r=0 for convenience.

Numerical Example

$$S = S_0 \exp(\sigma_1 W_t^{H_1}), \quad \sigma = \sigma_1 \exp(W_t^{H_2})$$

Hedging a call with strike K=100, maturity T=1 using S and a power option with payoff S_T^2



Prehistoric Smiles

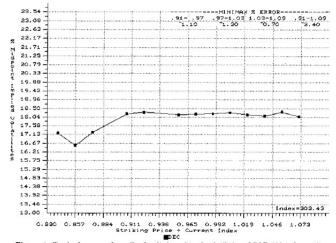


Figure 1. Typical precrash smile. Implied combined volatilities of S&P 500 index options (July 1, 1987; 9:00 A.M.).

Comparison with classical approach

- Traders calibrate a pricing model to market prices, they do not fit a statistical model
- ► They hedge many Greeks using multiple instruments
- ▶ Difference 1: We do not make any assumptions on the underlying dynamics (beyond regularity)
- Difference 2: We will make assumptions on how the market reacts to changes in the underlying
- ► Equivalently: We do not use a probability model, we use a pricing model.

Our $signal\ X$ consists of both the underlying and information about exchange traded option prices. It represents the data coming from calibrating a model to option prices.

p-th variation

Let $p \in \mathbb{R}_{\geq 1}$ and $\mathcal V$ be a real normed vector space. A continuous path $X \in C_0([0,T],\mathcal V)$ is said to have *vanishing p-th variation* along a sequence of partitions $\pi = (\pi_N)_{N \geq 1}$ if

$$\lim_{N\to\infty}\sum_{[u,v]\in\pi_N}\|X_v-X_u\|^p=0.$$

Not to be confused with p-variation!!!

Given a path $X \in C([0, T], \mathcal{V})$ we define the p-variation of X by

$$||X||_{p-var} = \left(\sup_{\pi} \sum_{[u,v] \in \pi} ||X_v - X_u||^p\right)^{\frac{1}{p}}.$$

Set up for European Gamma-Hedging

Let π be a sequence of partitions of [0,T] with mesh tending to zero.

- ► Two vector spaces V^1 , V^2
- ► Two paths $X^1 \in C([0,T], \mathcal{V}^1)$ and $X^2 \in C([0,T], \mathcal{V}^2)$
- \blacktriangleright X^1 has vanishing p_1 -th variation with $1 \le p_1 \le 2$.
- ► X^2 has vanishing p_2 -th variation with $1 \le p_2 \le 3$
- $ightharpoonup rac{1}{p_1} + rac{1}{p_2} \ge 1$
- $ightharpoonup X^1$ will represent the slowly varying components of our trading signal, e.g. (t, σ_t)
- \blacktriangleright χ^2 will represent the rough components of our trading signal, e.g. (S_t)

Main gamma-hedging theorem

- ▶ (n+1) functions $F': \mathcal{V}^1 \times \mathcal{V}^2 \to \mathbb{R}$ which are three-times differentiable
- \blacktriangleright (n+1) bounded functions $q^i:[0,T]\to\mathbb{R}$

The P^i represent the prices of European options, with index 0 being the option we wish to replicate The q^i will represent the quantities of each option that we hold.

We assume the gamma-hedging conditions

$$\sum_{i=0}^{n} q_t^i \nabla^{\alpha} F^i = 0, \quad \forall \, \alpha \in \{1, 2\}$$

$$\sum_{i=0}^n q_t^i \nabla^2 \nabla^2 F^i = 0$$

Then

$$\lim_{N\to\infty} \sum_{[u,v]\in\pi_N} \sum_{i=0}^n q_u^i (F^i(X^1(v),X^2(v)) - F^i(X^1(u),X^2(u))) = 0.$$

Proof - apply Taylor's Theorem

$$\begin{split} \sum_{[u,v]\in\pi_N} \sum_{i=0}^n q_u^i (F^i(X^1(v),X^2(v)) - F^i(X^1(u),X^2(u))) &= \\ \sum_{(a_1,a_2)\in\mathcal{I}} \sum_{[u,v]\in\pi_N} \sum_{i=0}^n c_{a_1,a_2} q_u^i (\nabla^1_{X_v^1-X_u^1})^{a_1} (\nabla^2_{X_v^2-X_u^2})^{a_2} F^i(\xi_{a_1+a_2}^{u,N}) \end{split}$$

Where

- $ightharpoonup \mathcal{I} = \{(a_1, a_2) : a_1, a_2 \in \mathbb{Z}_{>0}, 0 < a_1 + a_2 \leq 3\}$
- $ightharpoonup c_{a_1,a_2}$ is an appropriate constant
- $\blacktriangleright \xi_d^{u,N} = X_u \text{ for } d < 3$
- $\blacktriangleright \ \xi_3^{\bar{u},N} = X_u + \lambda^{u,N} (X_v X_u) \text{ for some } \lambda^{u,N} \in [0,1]$

Observe that all terms vanish in the limit

For the term $a_1 = 0$, $a_2 = 3$ use the vanishing third variation of X^2

$$|\sum_{[u,v] \in \pi_N} (\nabla^3_{X_v^2 - X_u^2}) F^i)| \leq \sum_{[u,v] \in \pi_N} C ||X_v^2 - X_u^2||^3 \to 0$$

- ► For the term $a_1 \ge 2$ terms use the vanishing quadratic variation of X^1
- For the term $a_1 = 1$, $a_2 = 2$ use both vanishing variations and Holder's inequality
- For the term $a_1 = 0$, $a_2 = 2$ use the gamma-hedging condition

$$\sum_{i=0}^n q_t^i \nabla^2 \nabla^2 F^i = 0$$

For the term $a_1 = 0$, $a_2 = 1$ use the delta-hedging condition

Corollary: Gamma-hedging with a common PDE

Take $V^1 = \mathbb{R}$ and $V^2 = \mathbb{R}^d$ and $X^1(t) = t$

- ► Let f^i be smooth payoff functions i = 0, ...n.
- lackbox Let $F:\mathbb{R}^2 o \mathbb{R}$ be C^3 functions satisfying a common PDE of the form

$$\nabla^{1}F^{i} = A(t,x)\nabla^{2}\nabla^{2}F^{i} + B(t,x)\nabla^{2}F^{i}$$

for operator valued functions A and B

▶ If *X* has vanishing *p*-variation for $p \le 3$ and

$$\sum_{i=0}^n q_t^i \nabla^2 F^i = 0$$

$$\sum_{i=0}^{n} q_t^i \nabla^2 \nabla^2 F^i = 0$$

Then

$$\lim_{N\to\infty} \sum_{[u,v]\in\pi_N} \sum_{i=0}^n q_u^i(F^i(t,X^2(v)) - F^i(t,X^2(u))) = 0.$$

Example: Gamma-hedging in diffusion models

Let $F^i: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$ (i = 0, ...n) by given by

$$F^i(t_0,x)=E(f^i(S_T))$$

where f is a smooth function and S_T is a diffusion process

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t, \quad S_{t_0} = x.$$

Let X^2 be a trading signal. If options are traded at the prices $F^i(t,X^2)$ for $i=1\ldots d$ then the gamma-hedging strategy (where $q_t^0=-1$), allows us to replicate F^0 so long as X^2 has vanishing p-th variation for $p\leq 3$.

Proof:

By Feynman–Kac the F^i obey a common equation.

Since $q_t^0 = -1$ we rearrange to find

$$F^{0}(T,X^{2}) - F^{0}(0,X^{2}) = \lim_{N \to \infty} \sum_{[u,v] \in \pi_{N}} \sum_{i=1}^{n} q_{u}^{i}(F^{i}(t,X^{2}(v)) - F^{i}(t,X^{2}(u))).$$

Example: Gamma-hedging with common maturity

Let $F(t, \sigma, S) = BS(f, t, T, \sigma, S)$ be given by Black-Scholes prices with r = 0.

Equivalently stated, let σ be the implied volatility process for options with common maturity T.

The delta-gamma hedging strategy allows us to replicate F^0 so long as σ has vanishing $p_1 \le 2$ -th variation, S has vanishing $p_2 \le 3$ -th variation and $\frac{1}{p} + \frac{1}{2} > 1$.

Proof:

Recall that vega is

$$\frac{\partial F}{\partial \sigma}$$

Our main result shows that if we were to delta-vega-gamma hedge then we could replicate the option. The Greeks in the Black-Scholes model satisfy

$$\sigma \tau S^2 \frac{\partial^2 F^i}{\partial S^2} = \frac{\partial F^i}{\partial \sigma}.$$

To prove this note that the pricing kernel satisfies this PDE.

Hence gamma-neutral implies vega-neutral and so it suffices to delta-gamma hedge.

Linear algebra

At each time u write $(dX_u)^a$ for the tensor $(X_v - X_u)^a$ that appear in our sums. View these symbols as basis vectors of a vector space.

- ► In our main result, we need the coefficients of dX_u^1 , dX_u^2 and $(dX^2)_u^2$ to vanish.
- ▶ When gamma-hedging in a 1-d diffusion model with $X^1 = t$ and $X^2 = S$ we assume the coefficients of dS_u and dS_u^2 vanish. The coefficient of dt_u automatically vanishes by the Feynman-Kac equation, so we do not need to "theta hedge".
- When gamma-hedging in model where the options have common maturity, we assume the coefficients of dS_u and dS_u^2 vanish. The coefficients of dt_u and $d\sigma_u$ vanish by the Feynman-Kac equation and the relation between gamma and vega.

Example: Delta-hedging in diffusion models

Let
$$F^i: \mathbb{R} \times \mathbb{R}^d \to \mathbb{R}$$
 $(i = 0, ...n)$ by given by

$$F^{i}(t_{0},x)=E(f^{i}(S_{T}))$$

where f is a smooth function and S_T is a diffusion process

$$dS_t = \mu(t, S_t)dt + \sigma(t, S_t)dW_t, \quad S_{t_0} = X.$$

Let X^2 be a trading signal. If options are traded at the prices $F^i(t,X^2)$ for $i=1\ldots d$ then the *delta-hedging strategy* allows us to replicate F^0 so long as the q^i are piecewise continuous and

$$\sum_{[u,v]\in\pi_0}\eta_u(X_v^2-X_u^2)^2\to\sum_{[u,v]\in\pi_0}\eta_u\sigma\sigma^{\mathsf{T}}(v-u)$$

for piecewise continuous $\eta \in \mathcal{V}^{\in} \otimes \mathcal{V}^{\in}$. We then say X^2 has quadratic variation given by the intergral of $\sigma\sigma^{\mathsf{T}}$.

Proof:

- ▶ Using the notation of our linear algebra arguments, the quadratic variation condition becomes $(dX^2)_u^2 = \sigma \sigma^T dt_u$
- This reduces the dimension of the space of coefficients, eliminating the need for gamma hedging

Arbitrage and the Black-Scholes PDE

- If we hedge using instruments whose greeks all satsify some linear relation, then anything we replicate will satisfy the same relations.
- If the greeks of our instruments have maximal dimension, then we have introduced a form of "arbitrage" as we can replicate anything by theta-delta-gamma hedging.
- ▶ If there is no "sure-arbitrage", all instruments must satisfy a common PDE.

Remarks on Smoothness

- ▶ If we are hedging using puts and calls, are argument fails if $S_T = K^i$ where K^i is the strike of instrument i.
- ► If we have a large number of hedging instruments available, we can choose to use the less volatile instruments for hedging.
- ► We can smooth the payoff and superhedge
- Probabilistic results tell us nothing about null sets

Exotics

- ► The proof works for hedging barrier options so long as the partial derivatives remain finite
- To hedge Asian options, augment the signal with the running integral of the stock price
- Smooth the payoff to enable superhedging. In a diffusion model, any continuous derivative can be super-hedged for a price arbitrarily close to the risk-neutral price.

Open issue:

- ▶ By the Martingale representation theorem all derivatives can be delta-hedged
- ► Describe which derivatives can be gamma hedged in an elegant fashion
- ► One criterion: the price can be written as a rough-path integral of the delta, with the gamma being the Gubinelli derivative.

Pedagogical possibilities?

- ► We have proved that delta-hedging converges without using the Ito integral
- ► We do not need to introduce the self-financing condition
- ► There are fewer interpretability issues as our result is a discrete-time result
- ► There is no need to define geometric Brownian motion using an Ito SDE
- ► The same proof shows how replication can work in probabilistic and non-probabilistic models

Conclusions

- By Taylor's theorem we can prove the effectiveness of delta-gamma hedging in diffusion models.
- We can also prove the effectiveness of delta hedging when the quadratic variation is known.
- We can understand replication and arbitrage using Taylor's theorem and linear algebra.

Thank you!